Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Predicting winter flooding is critical to protecting people and securing water resources in California’s Sierra Nevada. Rain-on-snow (ROS) events are a common cause of widespread flooding and are expected to increase in both frequency and magnitude with anthropogenic climate change in this region. ROS flood severity depends on terrestrial water input (TWI), the sum of rain and snowmelt that reaches the land surface. However, an incomplete understanding of the processes that control the flow and refreezing of liquid water in the snowpack limits flood prediction by operational and research models. We examine how antecedent snowpack conditions alter TWI during 71 ROS events between water years 1981 and 2019. Observations across a 500-m elevation gradient from the Independence Creek catchment were input into SNOWPACK, a one-dimensional, physically based snow model, initiated with the Richards equation and calibrated with collocated snow pillow observations. We compare observed “historical” and “scenario” ROS events, where we hold meteorologic conditions constant but vary snowpack conditions. Snowpack variables include cold content, snow density, liquid water content, and snow water equivalent. Results indicate that historical events with TWI > rain are associated with the largest observed streamflows. A multiple linear regression analysis of scenario events suggests that TWI is sensitive to interactions between snow density and cold content, with denser (>0.30 g cm−3) and colder (<−0.3 MJ of cold content) snowpacks retaining >50 mm of TWI. These results highlight the importance of hydraulic limitations in dense snowpacks and energy limitations in warm snowpacks for retaining liquid water that would otherwise be available as TWI for flooding. Significance StatementThe purpose of this study is to understand how the snowpack modulates quantities of water that reach the land surface during rain-on-snow (ROS) events. While the amount of near-term storm rainfall is reasonably predicted by meteorologists, major floods associated with ROS are more difficult to predict and are expected to increase in frequency. Our key findings are that liquid water inputs to the land surface vary with snowpack characteristics, and although many hydrologic models incorporate snowpack cold content and density to some degree, the complexity of ROS events justifies the need for additional observations to improve operational forecasting model results. Our findings suggest additional comparisons between existing forecasting models and those that physically represent the snowpack, as well as field-based observations of cold content and density and liquid water content, would be useful follow-up investigations.more » « less
-
Abstract The western United States (US) is a hotspot for snow drought. The Oregon Cascade Range is highly sensitive to warming and as a result has experienced the largest mountain snowpack losses in the western US since the mid‐20th century, including a record‐breaking snow drought in 2014–2015 that culminated in a state of emergency. While Oregon Cascade snowpacks serve as the state's primary water supply, short instrumental records limit water managers' ability to fully constrain long‐term natural snowpack variability prior to the influence of ongoing and projected anthropogenic climate change. Here, we use annually‐resolved tree‐ring records to develop the first multi‐century reconstruction of Oregon Cascade April 1st Snow Water Equivalent (SWE). The model explains 58% of observed snowpack variability and extends back to 1688 AD, nearly quintupling the length of the existing snowpack record. Our reconstruction suggests that only one other multiyear event in the last three centuries was as severe as the 2014–2015 snow drought. The 2015 event alone was more severe than nearly any other year in over three centuries. Extreme low‐to‐high snowpack “whiplash” transitions are a consistent feature throughout the reconstructed record. Multi‐decadal intervals of persistent below‐the‐mean peak SWE are prominent features of pre‐instrumental snowpack variability, but are generally absent from the instrumental period and likely not fully accounted for in modern water management. In the face of projected snow drought intensification and warming, our findings motivate adaptive management strategies that address declining snowpack and increasingly variable precipitation regimes.more » « less
An official website of the United States government
